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Overview
In recent years, AI systems have started to be deployed into the 

world, and researchers and practitioners are reckoning with their 

real-world harms. Some of these harms include commercial facial 

recognition systems that discriminate based on race, résumé 

screening systems that discriminate on gender, and AI-powered 

clinical health tools that are biased along socioeconomic and racial 

lines. These models have been found to reflect and amplify human 

social biases, discriminate based on protected attributes, and 

generate false information about the world. These findings have 

increased interest within the academic community in studying AI 

ethics, fairness, and bias and prompted industry practitioners to 

direct resources toward remediating these issues, and attracted 

attention from the media, governments, and the people who use and 

are affected by these systems. 

This year, the AI Index highlights metrics which have been adopted 

by the community for reporting progress in eliminating bias and 

promoting fairness. Tracking performance on these metrics alongside 

technical capabilities provides a more comprehensive perspective 

on how fairness and bias change as systems improve, which will be 

important to understand as systems are increasingly deployed.

CHAPTER 3: TECHNICAL AI ETHICS

http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.medrxiv.org/content/10.1101/2021.08.10.21261833v1.full


4Chapter 3 Preview

Artificial Intelligence
Index Report 2022

ACKNOWLEDGMENT
The AI Index would like to thank all those involved in research and advocacy around the development and governance 
of responsible AI. This chapter builds upon the work of scholars from across the AI ethics community, including those 
working on measuring technical capabilities as well those focused on shaping thoughtful societal norms. There is much 
more work to be done, but we are inspired by the progress made by this community and its collaborators. 

Publications cited in this Chapter include:

Sandhini Agarwal, Gretchen Krueger, Jack Clark, Alec Radford, Jong Wook Kim, and Miles Brundage. 2021. Evaluating 
CLIP: Towards Characterization of Broader Capabilities and Downstream Implications. arXiv preprint arXiv:2108.02818.

Jack Bandy and Nicholas Vincent. 2021. Addressing “Documentation Debt” in Machine Learning Research: A 
Retrospective Datasheet for Book Corpus. arXiv preprint arXiv:2105.05241.

Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahembwe. 2021. Multimodal Datasets: Misogyny, Pornography, and 
Malignant Stereotypes. arXiv preprint arXiv:2110.01963.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George van den 
Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman 
Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey 
Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. 2021. Improving 
Language Models by Retrieving from Trillions of Tokens. arXiv preprint arXiv:2112.04426.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. 2017. Word Embeddings Quantify 100 Years of Gender and 
Ethnic Stereotypes. arXiv preprint arXiv:1711.08412.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A.Smith. 2020. RealToxicityPrompts: Evaluating 
Neural Toxic Degeneration in Language Models. arXiv preprint arXiv:2009.11462.	

Wei Guo and Aylin Caliskan. 2020. Detecting Emergent Intersectional Biases: Contextualized Word Embeddings Contain a 
Distribution of Human-like Biases. arXiv preprint arXiv:2006.03955.					   

Aylin Caliskan Islam, Joanna J. Bryson, and Arvind Narayanan. 2016. Semantics Derived Automatically from Language 
Corpora Necessarily Contain Human Biases. arXiv preprint arXiv:1608.07187.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. 2021. Jurassic-1: Technical Details and Evaluation. (2021).  
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf

Chandler May, Alex Wang, Shikha Bordia, Samuel R. Bowman, and Rachel Rudinger. 2019. On Measuring Social Biases in 
Sentence Encoders. arXiv preprint arXiv:1903.10561.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2020. StereoSet: Measuring Stereotypical Bias in Pretrained Language 
Models. arXiv preprint arXiv:2004.09456.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, 
Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew 
Knight, Benjamin Chess, John Schulman. WebGPT: Browser-Assisted Question-Answering with Human Feedback. 2021. 
arXiv preprint arXiv:2112.09332.

https://arxiv.org/abs/2108.02818
https://arxiv.org/abs/2105.05241
https://arxiv.org/abs/2110.01963
https://arxiv.org/abs/2112.04426
http://arxiv.org/abs/1711.08412
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2006.03955
http://arxiv.org/abs/1608.07187
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
http://arxiv.org/abs/1903.10561
https://arxiv.org/abs/2004.09456
https://arxiv.org/abs/2112.09332v1


5Chapter 3 Preview

Artificial Intelligence
Index Report 2022

Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R. Bowman. 2020. CrowS-Pairs: A Challenge Dataset for 
Measuring Social Biases in Masked Language Models. arXiv preprint arXiv:2010.00133.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, 
Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter 
Welinder, Paul Christiano, Jan Leike, Ryan Lowe. Training Language Models to Follow Instructions with Human Feedback. 
2022. arXiv preprint arXiv:2203.02155.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis Song, John Aslanides, Sarah 
Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard 
Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, 
Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy 
Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela 
Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, 
Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug 
Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume, 
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James 
Bradbury, Matthew Johnson, Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward Lockhart, 
Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, 
Koray Kavukcuoglu, and Geoffrey Irving. 2021. Scaling Language Models: Methods, Analysis & Insights from Training 
Gopher. arXiv preprint arXiv:2112.11446.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettlemoyer. 2019. Evaluating Gender Bias in Machine Translation. arXiv 
preprint arXiv:1906.00591.

Ryan Steed and Aylin Caliskan. 2020. Image Representations Learned With Unsupervised Pre-Training Contain Human-
like Biases. arXiv preprint arXiv:2010.15052.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng, Mia Glaese, 
Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown, Will Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, 
Julia Haas, Laura Rimell, Lisa Anne Hendricks, William S. Isaac, Sean Legassick, Geoffrey Irving, and Iason Gabriel. 2021. 
Ethical and social risks of harm from Language Models. arXiv preprint arXiv:2112.04359.

Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John Mellor, Lisa Anne Hendricks, Kirsty 
Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. 2021. Challenges in Detoxifying Language Models. arXiv 
preprint arXiv:2109.07445.

Albert Xu, Eshaan Pathak, Eric Wallace, Suchin Gururangan, Maarten Sap, and Dan Klein. 2021. Detoxifying Language 
Models Risks Marginalizing Minority Voices. arXiv preprint arXiv:2104.06390.

Pei Zhou, Weijia Shi, Jieyu Zhao, Kuan-Hao Huang, Muhao Chen, Ryan Cotterell, and Kai-Wei Chang. 2019. Examining 
Gender Bias in Languages with Grammatical Gender. arXiv preprint arXiv:1909.02224.

https://arxiv.org/abs/2010.00133
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2112.11446
http://arxiv.org/abs/1906.00591
https://arxiv.org/abs/2010.15052
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2109.07445
https://arxiv.org/abs/2104.06390
http://arxiv.org/abs/1909.02224


6Chapter 3 Preview

Artificial Intelligence
Index Report 2022

CHAPTER HIGHLIGHTS

• �Language models are more capable than ever, but also more biased: Large language 
models are setting new records on technical benchmarks, but new data shows that larger 
models are also more capable of reflecting biases from their training data. A 280 billion 
parameter model developed in 2021 shows a 29% increase in elicited toxicity over a 
117 million parameter model considered the state of the art as of 2018. The systems are 
growing significantly more capable over time, though as they increase in capabilities, so does 
the potential severity of their biases.

• �The rise of AI ethics everywhere: Research on fairness and transparency in AI has exploded 
since 2014, with a fivefold increase in related publications at ethics-related conferences. 
Algorithmic fairness and bias has shifted from being primarily an academic pursuit to 
becoming firmly embedded as a mainstream research topic with wide-ranging implications. 
Researchers with industry affiliations contributed 71% more publications year over year  
at ethics-focused conferences in recent years.

• �Multimodal models learn multimodal biases: Rapid progress has been made on training 
multimodal language-vision models which exhibit new levels of capability on joint language-
vision tasks. These models have set new records on tasks like image classification and the 
creation of images from text descriptions, but they also reflect societal stereotypes and 
biases in their outputs—experiments on CLIP showed that images of Black people were 
misclassified as nonhuman at over twice the rate of any other race. While there has been 
significant work to develop metrics for measuring bias within both computer vision and natural 
language processing, this highlights the need for metrics that provide insight into biases in 
models with multiple modalities.

CHAPTER 3: TECHNICAL AI ETHICS
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Algorithmic bias is commonly framed in terms of 
allocative and representation harms. Allocative harm 
occurs when a system unfairly allocates an opportunity 
or resource to a specific group, and representation harm 
happens when a system perpetuates stereotypes and 
power dynamics in a way that reinforces subordination 
of a group. Algorithms are broadly considered fair when 
they make predictions that neither favor nor discriminate 
against individuals or groups based on protected 
attributes which cannot be used for decision-making due 

3.1 META-ANALYSIS OF FAIRNESS AND 
BIAS METRICS

to legal or ethical reasons (e.g., race, gender, religion).

To better understand the landscape of algorithmic bias 
and fairness, the AI Index conducted original research to 
analyze the state of the field. As shown in Figure 3.1.1, 
the number of metrics for measuring bias and fairness 
along ethical dimensions of interest has grown steadily 
since 2018. For this graph, the number of fairness and 
bias metrics published has been cited in at least one 
other work.1

1  2021 data may be lagging as it takes time for metrics to be adopted by the community.

Artificial Intelligence
Index Report 2022

Significant research effort has been invested over the past five years into creating datasets, benchmarks, and metrics designed to 
measure bias and fairness in machine learning models. Bias is often learned from the underlying training data for an AI model; this data 
can reflect systemic biases in society or the biases of the humans who collected and curated the data.

3.1 Meta-Analysis of Fairness and Bias Metrics
CHAPTER 3: TECHNICAL AI ETHICS
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Figure 3.1.1

https://www.youtube.com/watch?v=fMym_BKWQzk
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AI E THICS DIAGNOSTIC ME TRICS 
AND BENCHMARKS 
Measurement of AI systems along an ethical dimension 
often takes one of two forms: 

• �Benchmark datasets: A benchmark dataset contains 
labeled data, and researchers test how well their AI 
system labels the data. Benchmarks do not change over 
time. These are domain-specific (e.g., SuperGLUE and 
StereoSet for language models; ImageNet for computer 
vision) and often aim to measure behavior that is intrinsic 
to the model, as opposed to its downstream performance 
on specific populations (e.g., StereoSet measures model 
propensity to select stereotypes compared to non-
stereotypes, but it does not measure performance gaps 
between different subgroups).

• �Diagnostic metrics: A diagnostic metric measures the 
impact or performance of a model on a downstream 
task—for example, a population subgroup or individual 
compared to similar individuals or the entire population. 
These metrics can help researchers understand how a 
system will perform when deployed in the real world, and 
whether it has a disparate impact on certain populations. 
Examples include group fairness metrics such as 
demographic parity and equality of opportunity.

Benchmarks are useful indicators of progress for the 
field as a whole, and their impact can be measured 
by community adoption (e.g., number of leaderboard 
submissions, or the number of research papers which 
report metrics). They also often enable rapid algorithmic 
progress as research labs compete on leaderboard 
metrics. However, some leaderboards can be easily 
gamed, and may be based on benchmark datasets that 
contain flaws, such as incorrect labels or poorly defined 
classes. Additionally, their static nature means they are a 
snapshot of a specific cultural and temporal context—in 
other words, a benchmark published in 2017 may not 
correlate to the deployment context of 2022.

Diagnostic metrics enable researchers and practitioners 
to understand the impact of their system on a specific 
application or group and potential concrete harm (e.g., 
“this model is disproportionately underperforming on this 
group with this protected attribute”). Diagnostic metrics 
are most useful at an individual model or application level 
as opposed to functioning as field-level indicators. They 
indicate how a specific AI system performs on a specific 
subgroup or individual, which is helpful for assessing 
real-world impact. However, while these metrics may be 
widely used to test models privately, there is not as much 
information available publicly as these metrics are not 
attached to leaderboards which encourage researchers to 
publish their results.

Figure 3.1.2 shows that there has been a steady amount 
of research investment into developing both benchmarks 
and diagnostic metrics over time.2 3

3.1 Meta-Analysis of Fairness and Bias Metrics
CHAPTER 3: TECHNICAL AI ETHICS

2 Research paper citations are a lagging indicator of activity, and metrics which have been very recently adopted may not be reflected in the current data, similar to 3.1.1.
3 The Perspective API defined seven new metrics for measuring facets of toxicity (toxicity, severe toxicity, identity attack, insult, obscene, sexually explicit, threat), contributing to the unusually high 
number of metrics released in 2017.

Benchmarks are useful 
indicators of progress 
for the field as a whole, 
and their impact can be 
measured by community 
adoption (e.g., number of 
leaderboard submissions, 
or the number of research 
papers which report 
metrics). 

https://twitter.com/sleepinyourhat/status/1152205373253795840
https://twitter.com/sleepinyourhat/status/1152205373253795840
https://www.perspectiveapi.com/
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Figure 3.1.2

2016 2017 2018 2019 2020 2021

Benchmarks
Diagnostic Metrics

The rest of this chapter examines the performance of 
recent AI systems on these metrics and benchmarks in 
depth within domains such as natural language and 
computer vision. The majority of these metrics measure 

intrinsic bias within systems, and it has been shown that 
intrinsic bias metrics may not fully capture the effects of 
extrinsic bias within downstream applications.

3.1 Meta-Analysis of Fairness and Bias Metrics
CHAPTER 3: TECHNICAL AI ETHICS

https://arxiv.org/abs/2012.15859
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Bias metrics can be split into two major categories: intrinsic 
metrics, which measure bias in internal embedding spaces 
of models, and extrinsic metrics, which measure bias in 
the downstream tasks and outputs of the model. Examples 
of extrinsic metrics include group fairness metrics (parity 
across protected groups) and individual fairness metrics 
(parity across similar individuals), which measure whether 
a system has a disproportionately negative impact on a 
subgroup or individual, or gives preferential treatment to 
one group at the expense of another.

TOXICITY: REALTOXICITYPROMPTS 
AND THE PERSPECTIVE API
Measuring toxicity in language models requires labels for 
toxic and nontoxic content. Toxicity is defined as a rude, 

3.2 NATURAL LANGUAGE PROCESSING 
BIAS METRICS

Artificial Intelligence
Index Report 2022

Current state-of-the-art natural language processing (NLP) relies on large language models or machine learning systems that process 
millions of lines of text and learn to predict words in a sentence. These models can generate coherent text; classify people, places, and 
events; and be used as components of larger systems, like search engines. Collecting training data for these models often requires scraping 
the internet to create web-scale text datasets. These models learn human biases from their pretraining data and reflect them in their 
downstream outputs, potentially causing harm. Several benchmarks and metrics have been developed to identify bias in natural language 
processing along axes of gender, race, occupation, disability, religion, age, physical appearance, sexual orientation, and ethnicity.

3.2 Natural Language Processing Bias Metrics
CHAPTER 3: TECHNICAL AI ETHICS
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Figure 3.2.1

disrespectful or unreasonable comment that is likely to 
make someone leave a conversation. The Perspective 
API is a tool developed by Jigsaw, a Google company. It 
was originally designed to help platforms identify toxicity 
in online conversations. Developers input text into the 
Perspective API, which returns probabilities that the text 
should be labeled as falling into one of the following 
categories: toxicity, severe toxicity, identity attack, insult, 
obscene, sexually explicit, and threat.

Since the Perspective API was released in 2017, the NLP 
research community has rapidly adopted it for measuring 
toxicity in natural language. As seen in Figure 3.2.1, the 
number of papers using the Perspective API doubled 
between 2020 and 2021, from 8 to 19.

https://support.perspectiveapi.com/s/about-the-api-attributes-and-languages
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RealToxicityPrompts consists of English natural language 
prompts used to measure how often a language model 
completes a prompt with toxic text. Toxicity of a language 
model is measured with two metrics: 

•  �Maximum toxicity: the average maximum toxicity score 
across some number of completions

•  �Probability of toxicity: how often a completion is 
expected to be toxic

Figure 3.2.2 shows that toxicity in language models 
depends heavily on the underlying training data. Models 
trained on internet text with toxic content filtered out are 
significantly less toxic compared to models trained on 
various corpora of unfiltered internet text. A model trained 
on BookCorpus (a dataset containing books from e-book 
websites) produces toxic text surprisingly often. This 
may be due to its composition—BookCorpus contains a 
significant number of romance novels containing explicit 
content, which may contribute to higher levels of toxicity.

CHAPTER 3: TECHNICAL AI ETHICS
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3.2 Natural Language Processing Bias Metrics

https://arxiv.org/abs/2009.11462
https://arxiv.org/pdf/2105.05241.pdf
https://arxiv.org/pdf/2105.05241.pdf
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3.2 Natural Language Processing Bias Metrics

Large Language Models and Toxicity
Recent developments around mitigating toxicity 
in language models have lowered both expected 
maximum toxicity and the probability of toxicity. 
However, detoxification methods consistently lead 
to adverse side effects and somewhat less capable 
models. (For example, filtering training data 
typically comes at the cost of model performance.)

In December 2021, DeepMind released a paper 
describing its 280 billion parameter language 
model, Gopher. Figure 3.2.3a and Figure 3.2.3b 
from the Gopher paper show that larger models 
are more likely to produce toxic outputs when 

prompted with inputs of varying levels of toxicity, 
but that they are also more capable of detecting 
toxicity with regard to their own outputs as well as 
in other contexts, as measured by increased AUC 
(area under the receiver operating characteristic 
curve) with model size. The AUC metric plots the 
true positive rate against the false positive rate 
to characterize how well a model distinguishes 
between classes (higher is better). Larger models 
are dramatically better at identifying toxic 
comments within the CivilComments dataset, as 
shown in Figure 3.2.3b.
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3.2 Natural Language Processing Bias Metrics

Large Language Models and Toxicity (cont’d)
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DE TOXIFICATION OF MODELS 
CAN NEGATIVELY INFLUENCE 
PERFORMANCE
Detoxification methods aim to mitigate toxicity by 
changing the underlying training data as in domain-
adaptive pretraining (DAPT), or by steering the model 
during generation as in Plug and Play Language Models 
(PPLM) or Generative Discriminator Guided Sequence 
Generation (GeDi).

A study on detoxifying language models shows that 
models detoxified with these strategies all perform worse 
on both white-aligned and African American English on 
perplexity, a metric that measures how well a model has 
learned a specific distribution (lower is better) (Figure 
3.2.4). These models also perform disproportionately 
worse on African American English and text containing 
mentions of minority identities compared to white-
aligned text, a result that is likely due to human biases 
causing annotators to be more apt to mislabel African 
American English as toxic.

CHAPTER 3: TECHNICAL AI ETHICS
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3.2 Natural Language Processing Bias Metrics

https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://github.com/uber-research/PPLM
https://arxiv.org/abs/2009.06367
https://arxiv.org/abs/2009.06367
https://arxiv.org/abs/2104.06390
https://aclanthology.org/P19-1163/
https://aclanthology.org/P19-1163/
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STEREOSE T
StereoSet is a benchmark measuring stereotype bias along 
the axes of gender, race, religion, and profession, along 
with raw-language modeling ability. One of the associated 
metrics is stereotype score, which measures whether a 
model prefers stereotypes and anti-stereotypes equally. A 
stereotype is an over-generalized belief widely held about 
a group and an anti-stereotype is a generalization about a 
group which contradicts widely accepted stereotypes.

StereoSet has several major flaws in its underlying dataset: 
Some examples fail to express a harmful stereotype, 
conflate stereotypes about countries with stereotypes 
about race and ethnicity, and confuse stereotypes 
between associated but distinct groups. Additionally, 

Figure 3.2.5 shows that StereoSet performance follows 
the same trend seen with toxicity: Larger models reflect 
stereotypes more often unless interventions are taken 
to reduce learned stereotypes during training. The 
prevalence of toxic content online has been estimated 
to be 0.1–3%, which aligns with research showing that 
larger language models are more capable of memorizing 
rare text.

these stereotypes were sourced from crowdworkers 
located in the United States, and the resulting values and 
stereotypes within the dataset may not be universally 
representative.
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https://arxiv.org/abs/2004.09456
https://www.microsoft.com/en-us/research/uploads/prod/2021/06/The_Salmon_paper.pdf
https://arxiv.org/abs/1802.00393
https://www.usenix.org/system/files/sec21-carlini-extracting.pdf
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CROWS-PAIRS
CrowS-Pairs (Crowdsourced Stereotype Pairs) is another 
benchmark measuring stereotype bias. While StereoSet 
compares attributes about a single group, CrowS-Pairs 
contrasts relationships between historically disadvantaged 
and advantaged groups (e.g., Mexicans versus white 
people).

The creators of CrowS-Pairs measured stereotype bias 
using three popular language models: BERT, RoBERTa, 
and ALBERT (Figure 3.2.6). On standard language 
modeling benchmarks, ALBERT outperforms RoBERTa, 
which outperforms BERT.4 However, ALBERT is the most 
biased of the three models according to CrowS-Pairs. 
This mirrors the trend observed with StereoSet and 
RealToxicityPrompts: More capable models are also more 
capable of learning and amplifying stereotypes.

Like earlier examples, BERT, RoBERTa, and ALBERT 
appear to inherit biases from their training data. They 
were all trained on a combination of BookCorpus, English 
Wikipedia, and text scraped from the internet. Analysis 
of BookCorpus reveals that its books about religion are 
heavily skewed toward Christianity and Islam compared 
to other major world religions,5 though it is unclear the 
extent to which these books contain historical content 
versus content written from a specific religious viewpoint.6

We can examine how language models may inherit biases 
about certain religions by looking at their underlying 
datasets. Figure 3.2.7 shows the number of books 
pertaining to different religions in two popular datasets, 
BookCorpus and Smashwords21. Both datasets have 
far more mentions of Christianity and Islam than other 
religions.
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4   Per results on the SQuAD, GLUE, and RACE benchmarks. 
5 Such as Sikhism, Judaism, Hinduism, Buddhism, Atheism.
6 Hate speech classifiers fine-tuned on top of BERT in particular have been shown to frequently misclassify texts containing mentions of “Muslim” as toxic, and researchers find that GPT-3 contains 
significant bias along religious axes for mentions of both “Jewish” and “Muslim.”

https://arxiv.org/abs/2105.05241
https://arxiv.org/abs/2105.05241
https://aclanthology.org/2020.acl-main.483/
https://arxiv.org/abs/2101.05783
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WINOGENDER AND WINOBIAS
Winogender measures gender bias related to occupations. 
Systems are measured on their ability to fill in the correct 
gender in a sentence containing an occupation (e.g., 
“The teenager confided in the therapist because he / she 
seemed trustworthy”). Examples were created by sourcing 
data from the U.S. Bureau of Labor Statistics to identify 
occupations skewed toward one gender (e.g., the cashier 
occupation is made up of 73% women, but drivers are only 
6% women).

Performance on Winogender is measured by the accuracy 
gap between the stereotypical and anti-stereotypical 
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cases, along with the gender parity score (the percentage 
of examples for which the predictions are the same). 
The authors use crowdsourced annotations to estimate 
human performance to be 99.7% accuracy.

Winogender results from the SuperGLUE leaderboard 
show that larger models are more capable of correctly 
resolving gender in the zero-shot and few-shot setting 
(i.e., without fine-tuning on the Winogender task) and less 
likely to magnify occupational gender disparities (Figure 
3.2.8). However, a good score on Winogender does not 
indicate that a model is unbiased with regard to gender, 
only that bias was not captured by this benchmark.

https://arxiv.org/abs/1804.09301
https://github.com/uclanlp/corefBias
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WinoBias is a similar benchmark measuring gender bias 
related to occupations that was released concurrently 
with Winogender by a different research group. As 
shown in Figure 3.2.9, WinoBias is cited more often than 
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Winogender, but the adoption of Winogender within the 
SuperGLUE leaderboard for measuring natural language 
understanding has led to more model evaluations being 
reported on Winogender.

https://arxiv.org/abs/1804.06876
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WINOMT: GENDER BIAS IN 
MACHINE TRANSLATION SYSTEMS
Commercial machine translation systems have been 
documented to reflect and amplify societal biases 
from their underlying datasets. As these systems are 
used broadly in global industries such as e-commerce, 
stereotypes and mistakes in translation can be costly.

WinoMT is a benchmark measuring gender bias in 
machine translation that is created by combining the 
Winogender and WinoBias datasets. Models are evaluated 
by comparing the sentences translated from English to 
another language and extracting the translated gender to 
compare with the original gender. Systems are scored on 
the percentage of translations with correct gender (gender 
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accuracy), the difference in F1 score between masculine 
and feminine examples, and the difference in F1 score 
between examples with stereotypical gender roles and 
anti-stereotypical gender roles.

As seen in Figure 3.2.10, Google Translate has been 
shown to perform better across all tested languages 
(Arabic, English, French, German, Hebrew, Italian, 
Russian, Ukrainian) when translating examples containing 
occupations that conform to societal biases about gender 
roles. Additionally, these systems translate sentences 
with the correct gender only up to 60% of the time. Other 
major commercial machine translation systems (Microsoft 
Translator, Amazon Translate, SYSTRAN) have been shown 
to behave similarly.

https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html
https://alibaba-cloud.medium.com/translating-100-billion-words-every-day-for-e-commerce-with-alibaba-machine-translation-b592ae52f697
https://aclanthology.org/P19-1164.pdf
https://aclanthology.org/P19-1164.pdf
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WORD AND IMAGE EMBEDDING 
ASSOCIATION TESTS
Word embedding is a technique in NLP that allows words 
with similar meanings to have similar representations. 
Static word embeddings are fixed representations which 
do not change with context. For example, polysemous 
words will have the same representation (embedding) 
regardless of the sentence in which they appear. Examples 
of static word embeddings include GloVe, PPMI, FastText, 
CBoW, and Dict2vec. In contrast, contextualized word 
embeddings are dynamic representations of words that 
change based on the word’s accompanying context. For 
example, “bank” would have different representations in 
“riverbank” and “bank teller.”

The Word Embedding Association Test (WEAT) quantifies 
bias in English static word embeddings by measuring 
the association (“effect size”) between concepts (e.g., 
European-American and African American names) and 
attributes (e.g., pleasantness and unpleasantness). 
Word embeddings trained on large public corpora 
(e.g., Wikipedia, Google News) consistently replicate 
stereotypical biases when evaluated on WEAT (e.g., 
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associating male terms with “career” and female 
terms with “family”). CEAT (Contextualized Embedding 
Association Test) extends WEAT to contextualized word 
embeddings.

The Image Embedding Association Test (iEAT) modifies 
WEAT to measure associations between social concepts 
and image attributes. Using iEAT, researchers showed that 
pretrained generative vision models (iGPT and simCLRv2) 
exhibit humanlike biases with regard to gender, race, age, 
and disability.

Word embeddings can be aggregated into sentence 
embeddings with models known as sentence encoders. 
The Sentence Encoder Association Test (SEAT) extends 
WEAT to measure bias in sentence encoders related 
to gendered names, regional names, and stereotypes. 
Newer transformer-based language models which use 
contextualized word embeddings appear to be less biased 
than their predecessors, but most models still show 
significant bias with regard to gender and occupations, 
as well as African American names versus European-
American names, as shown in Figure 3.2.11.

https://arxiv.org/abs/1608.07187v4
https://arxiv.org/abs/2006.03955
https://arxiv.org/abs/2010.15052
https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://medium.com/syncedreview/google-brains-simclrv2-achieves-new-sota-in-semi-supervised-learning-1ac5f591c5ae
https://arxiv.org/abs/1903.10561
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Word embeddings also reflect cultural shifts: A temporal 
analysis of word embeddings over 100 years of U.S. Census 
text data shows that changes in embeddings closely track 
demographic and occupational shifts over time. Figure 
3.2.12 shows that shifts in embeddings trained on the 
Google Books and Corpus of Historical American English 
(COHA) corpora reflect significant historical events like the 
women’s movement in the 1960s and Asian immigration 
to the United States. In this analysis, embedding bias is 
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measured with the relative norm difference: the average 
Euclidean distance between words associated with 
representative groups (e.g., men, women, Asians) and 
words associated with occupations. The blue line shows 
gender bias over time, where negative values indicate 
that embeddings more closely associate occupations with 
men. The red line shows the bias of embeddings relating 
race to occupations, specifically in the case of Asian 
Americans and whites.

https://www.pnas.org/content/115/16/E3635
https://www.pnas.org/content/115/16/E3635
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Multilingual Word Embeddings
Large language models are often monolingual 
since they require a significant amount of text data 
to train. While English text can be easily sourced 
by scraping the internet, the challenge is greater 
with low-resource languages like Fula. XWEAT is a 
multilingual and cross-lingual extension of WEAT 
that is designed for comparative bias analyses 
between languages. Results on XWEAT show that 
bias in cross-lingual embeddings can roughly be 
predicted from the biases in the corresponding 
monolingual embedding, indicating that biases can 
be transferred between languages.

Another study on gender bias extends WEAT 
to quantify biases in bilingual embeddings in 
languages with grammatical gender, such as 
Spanish or French. Figure 3.2.13 shows that 
masculine words in Spanish are closer to the 
English words for historically male-dominated 
occupations (e.g., architect) as well as the 
neutral position, as indicated by the vertical line. 
Similarly, feminine occupation words are closer to 
English words for historically female-dominated 
occupations (e.g., nurse). 
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Figure 3.2.13

Mitigating Bias in Word Embeddings With 
Intrinsic Bias Metrics
It is often assumed that reducing intrinsic bias by de-
biasing embeddings will reduce downstream biases 
in applications (extrinsic bias). However, it has been 

demonstrated that there is no reliable correlation 
between intrinsic bias metrics and downstream 
application biases. Further investigation is needed to 
establish meaningful relationships between intrinsic and 
extrinsic metrics.

https://aclanthology.org/2020.lrec-1.341/
https://aclanthology.org/S19-1010.pdf
https://aclanthology.org/D19-1531/
https://arxiv.org/abs/2012.15859
https://arxiv.org/pdf/2108.07258.pdf
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ACM CONFERENCE ON FAIRNESS, 
ACCOUNTABILITY, AND 
TRANSPARENCY (FACCT)
ACM FAccT is an interdisciplinary conference publishing 
research in algorithmic fairness, accountability, and 
transparency.7 While several AI conferences offer 
workshops dedicated to similar topics, FAccT was one 
of the first major conferences created to bring together 
researchers, practitioners, and policymakers interested in 
sociotechnical analysis of algorithms.

3.3 AI ETHICS TRENDS AT FACCT 
AND NEURIPS

Artificial Intelligence
Index Report 2022

To grasp how the field of AI ethics has evolved over time, this section studies trends from the ACM Conference on Fairness, Accountability, 
and Transparency (FAccT), which publishes work on algorithmic fairness and bias, and from NeurIPS workshops. The section identifies 
emergent trends in workshop publication topics and shares insights on authorship trends by affiliation and geographic region.

3.3 AI Ethics Trends at FAccT and NeurIPS
CHAPTER 3: TECHNICAL AI ETHICS
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Figure 3.3.1 shows that industry labs are making up a 
larger share of publications at FAccT year over year. They 
often produce work in collaboration with academia but 
are increasingly producing standalone work as well. In 
2021, 53 authors listed an industry affiliation, up from 
31 authors in 2020 and only 5 authors at the inaugural 
conference in 2018. This aligns with recent findings that 
point to a trend of deep learning researchers transitioning 
from academia to industry labs.

7  Work accepted by FAccT includes technical frameworks for measuring fairness, investigations into the harms of AI in specific industries (e.g., discrimination in online advertising, biases in 
recommender systems), proposals for best practices, and better data collection strategies. Several works published at FAccT have become canonical works in AI ethics; examples include Model Cards for 
Model Reporting (2019) and On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? (2021). Notably, FAccT publishes a significant amount of work critical of contemporary methods and 
systems in AI.

https://arxiv.org/abs/2102.01648
https://proceedings.mlr.press/v81/datta18a.html
http://proceedings.mlr.press/v81/ekstrand18b.html
https://dl.acm.org/doi/10.1145/3442188.3445918
https://arxiv.org/abs/1912.10389
https://arxiv.org/abs/1810.03993
https://arxiv.org/abs/1810.03993
https://dl.acm.org/doi/10.1145/3442188.3445922
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While there has been increased interest in fairness, 
accountability, and transparency research from all types 
of organizations, the majority of papers published at FAccT 
are written by researchers based in the United States, 

followed by researchers based in Europe and Central Asia 
(Figure 3.3.2). From 2020 to 2021, the proportion of papers 
from institutions based in North America increased from 
70.2% to 75.4%.

3.3 AI Ethics Trends at FAccT and NeurIPS
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NEURIPS WORKSHOPS
NeurIPS, one of the largest AI conferences, held its first 
workshop on fairness, accountability, and transparency in 
2014. Figure 3.3.3 shows the number of research papers 

at NeurIPS ethics-related workshops in the past six years 
by research topic, indicating an increased interest in 
AI applied to high-risk, high-impact use cases such as 
climate, finance, and healthcare.
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Interpretability, Explainability, and  
Causal Reasoning
Several workshops have been created at NeurIPS around 
interpretability and explainability, including safety-
critical AI affecting human decisions,8 interpretability 
and causality for algorithmic fairness,9 and the necessity 
of explainability for high-risk use cases.10 Interpretability 
and explainability work focus on designing systems that 
are inherently interpretable and providing explanations 
for the behavior of a black-box system, while the study of 
causal inference aims to understand cause and effect by 
uncovering associations between variables that depend 
on each other and asking what would have happened if a 
different decision had been made—that is, if this had not 
occurred, then that would not have happened.

Counterfactual analysis can be used to gain insight into 
a black-box system by changing an input feature and 
observing how the output changes. This can be applied to 

measure fairness by changing protected attributes of an 
individual input (e.g., race, gender) and observing how the 
model outputs a different prediction—for example, a bank 
can change the “age” feature in a model to understand if 
its model performs fairly on customers over 60 years old. 
Counterfactual fairness formalizes the idea that a model 
makes fair decisions with regard to an individual if the 
decision would be the same if the individual belonged to a 
different demographic. 

Since 2018, an increasing number of papers on causal 
inference have been published at NeurIPS. In 2021, there 
were three workshops at NeurIPS dedicated to causal 
inference, including one devoted entirely to causality and 
algorithmic fairness (Figure 3.3.4). Figure 3.3.5 shows that 
there has been a similar increase in research papers in 
interpretability and explainability work at NeurIPS over 
time, especially in the NeurIPS main track.
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8 See 2017 Transparent and Interpretable Machine Learning in Safety Critical Environments, 2019 Workshop on Human-Centric Machine Learning: Safety and Robustness in Decision-Making, 2019, 
“‘Do the Right Thing’: Machine Learning and Causal Inference for Improved Decision-Making.”
9 See 2020 “Algorithmic Fairness Through the Lens of Causality and Interpretability.”
10 See 2020 “Machine Learning for Health (ML4H): Advancing Healthcare for All,” 2020 Workshop on Fair AI in Finance.

https://arxiv.org/abs/1811.10154
https://arxiv.org/abs/1702.08608
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
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Privacy and Data Collection
Amid growing concerns about privacy, data sovereignty, 
and the commodification of personal data for profit, there 
has been significant momentum in industry and academia 
to build methods and frameworks to help mitigate 
privacy concerns. Since 2018, several workshops have 
been devoted to privacy in machine learning, covering 
topics such as privacy in machine learning within specific 

domains (e.g., financial services), federated learning for 
decentralized model training, and differential privacy 
to ensure that training data does not leak personally 
identifiable information.11 This section shows the number 
of papers submitted to NeurIPS mentioning “privacy” in 
the title along with papers accepted to privacy-themed 
NeurIPS workshops, and finds a significant increase in the 
number of accepted papers since 2016 (Figure 3.3.6).
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11 See “Privacy Preserving Machine Learning,” Workshop on Federated Learning for Data Privacy and Confidentiality, Privacy in Machine Learning (PriML).
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Fairness and Bias
In 2020, NeurIPS started requiring authors to submit 
broader impact statements addressing the ethical and 
potential societal consequences of their work, a move 
that suggests the community is signaling the importance 
of AI ethics early in the research process. One measure of 
the interest in fairness and bias at NeurIPS over time is 

the number of papers accepted to the conference main 
track that mention fairness or bias in the title, along 
with papers accepted to a fairness-related workshop. 
Figure 3.3.7 shows a sharp increase from 2017 onward, 
demonstrating the newfound importance of these topics 
within the research community.
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FACT-CHECKING WITH AI
In recent years, social media platforms have deployed 
AI systems to help manage the proliferation of online 
misinformation. These systems may aid human fact-
checkers by identifying potential false claims for them to 
review, surfacing previously fact-checked similar claims, or 
surfacing evidence that supports a claim. Fully automated 
fact-checking is an active area of research: In 2017, the 
Fake News Challenge encouraged researchers to build 
AI systems for stance detection, and in 2019, a Canadian 
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This section analyzes trends in using AI to verify the factual accuracy of claims, as well as research related to measuring the truthfulness 
of AI systems. It is imperative that AI systems deployed in safety-critical contexts (e.g., healthcare, finance, disaster response) provide 
users with knowledge that is factually accurate, but today’s state-of-the-art language models have been shown to generate false 
information about the world, making them unsafe for fully automated decision making.
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venture capital firm invested $1 million in an automated 
fact-checking competition for fake news.

The research community has developed several 
benchmarks for evaluating automatic fact-checking 
systems, where verifying the factuality of a claim is posed 
as a classification or scoring problem (e.g., with two 
classes classifying whether the claim is true or false). 
Figure 3.4.1 shows that most datasets binarize labels into 
true or false categories, while some datasets have many 
categories for claims.

https://ai.facebook.com/blog/heres-how-were-using-ai-to-help-detect-misinformation/
https://arxiv.org/abs/2103.07769
https://arxiv.org/abs/2103.07769
https://aclanthology.org/C18-1158/
https://arxiv.org/abs/1906.07241
https://www.leaders.vc/post/the-leaders-prize
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The increased interest in automated fact-checking 
is evidenced by the number of citations of relevant 
benchmarks: FEVER is a fact extraction and verification 
dataset made up of claims classified as supported, refuted, 
or not enough information. LIAR is a dataset for fake news 
detection with six fine-grained labels denoting varying 
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Figure 3.4.2

levels of factuality. Similarly, Truth of Varying Shades is a 
multiclass political fact-checking and fake news detection 
benchmark. Figure 3.4.2 shows that these three English 
benchmarks have been cited with increasing frequency in 
recent years.

https://arxiv.org/abs/1803.05355v3
https://arxiv.org/abs/1705.00648
https://aclanthology.org/D17-1317/
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Figure 3.4.3 shows the number of fact-checking datasets 
created for English compared to all other languages 
over time. As seen in Figure 3.4.4, there are only 35 non-
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Figure 3.4.4

English datasets (including 14 in Arabic, 5 in Chinese, 3 
in Spanish, 3 in Hindi, and 2 in Danish) compared to 142 
English-only datasets.12

12 Modern language models are trained on disproportionately larger amounts of English text, which negatively impacts performance on other languages. The Gopher family of models is trained on MassiveText 
(10.5 TB), which is 99% English. Similarly, only 7% of training data in GPT-3 was in languages other than English. See the Appendix for a comparison of a multilingual model (XGLM-564M) and GPT-3.
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Measuring Fact-Checking Accuracy  
With FEVER Benchmark 
FEVER (Fact Extraction and VERification) is a benchmark 
measuring the accuracy of fact-checking systems, where 
the task requires systems to verify the factuality of a 
claim with supporting evidence extracted from English 
Wikipedia. Systems are measured on classification 
accuracy and FEVER score, a custom metric which 
measures whether the claim was correctly classified and 
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Figure 3.4.5

at least one set of supporting evidence was correctly 
identified. Several variations of this dataset have 
since been introduced (e.g., FEVER 2.0, FEVEROUS, 
FoolMeTwice). 

Figure 3.4.5 shows that state-of-the-art performance has 
steadily increased over time on both accuracy and FEVER 
score. Some contemporary language models only report 
accuracy, as in the case of Gopher.

https://arxiv.org/abs/1803.05355v3
https://fever.ai/2019/task.html
https://arxiv.org/abs/2106.05707
https://arxiv.org/abs/2104.04725
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TOWARD TRUTHFUL LANGUAGE 
MODELS
While language models have become increasingly 
more coherent, they have also become more fluent at 
generating factually incorrect statements and fabricating 
falsehoods. This increased fluency means they also have 
a greater capacity to perpetuate harm by, for instance, 
creating convincing conspiracy theories. 

Model Size and Truthfulness 
TruthfulQA is a benchmark designed to evaluate the 
truthfulness of language models on question answering, 
with questions drawn from categories such as health, 
law, finance, and politics. Questions were designed such 
that humans might be prone to answer incorrectly due 
to common misconceptions: For example, when asked, 
“What happens if you smash a mirror?” GPT-3 responds, 
“You will have seven years of bad luck.”

The task is formulated as an open-ended generative 
task, where systems are evaluated on the truthfulness 
and informativeness of their answers (e.g., answering 
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Figure 3.4.6

Model

“I don’t know” may be truthful but not informative). A 
combination of metrics adapted from machine translation 
(BLEURT, ROUGE, and BLEU) are used to compare the 
model answer to reference answers. In this setting, a small 
model called GPT-Judge is also learned to predict human 
evaluations of truthfulness and informativeness for a 
given answer. Alternatively, the task can be formulated 
as a multiple-choice task where models are evaluated on 
their accuracy in selecting the correct answer.

In the multiple-choice version of this task, initial 
experiments on GPT-Neo, GPT-2, T5 (UnifiedQA), and GPT-
3 showed that larger models provide more informative 
answers but are not necessarily more truthful. Later 
experiments on DeepMind’s Gopher model contradicted 
this finding: Figure 3.4.6 from the Gopher paper 
shows that accuracy improves with model size on the 
multiple-choice task. This contradiction may be due to 
the formulation of the TruthfulQA dataset, which was 
collected adversarially against GPT-3 175-B, possibly 
explaining the lower performance of the GPT-3 family of 
models.

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/convinceme
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://storage.googleapis.com/deepmind-media/research/language-research/Training%20Gopher.pdf
https://storage.googleapis.com/deepmind-media/research/language-research/Training%20Gopher.pdf


36Chapter 3 Preview

Artificial Intelligence
Index Report 2022

WebGPT was designed to improve the factual accuracy 
of GPT-3 by introducing a mechanism to search the Web 
for sources to cite when providing answers to questions. 
Similar to Gopher, WebGPT also shows more truthful 
and informative results with increased model size. While 
performance improves compared to GPT-3, WebGPT 
still struggles with out-of-distribution questions, and its 
performance is considerably below human performance. 
However, since WebGPT cites sources and appears more 
authoritative, its untruthful answers may be more harmful 
as users may not investigate cited material to verify each 
source.

InstructGPT models are a variant of GPT-3 and they use 
human feedback to train a model to follow instructions, 
created by fine-tuning GPT-3 on a dataset of human-
written responses to a set of prompts. The fine-tuned 
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Figure 3.4.7

Model

models using human-curated responses are called SFT 
(supervised fine-tuning). The baseline SFT is further 
fine-tuned using reinforcement learning from human 
feedback. This family is called PPO because it uses a 
technique called Proximal Policy Optimization. Finally, 
PPO models are further enhanced and called InstructGPT.

Figure 3.4.7 shows the truthfulness of eight language 
model families on the TruthfulQA generation task. Similar 
to the scaling effect observed in the Gopher family, the 
WebGPT and InstructGPT models yield more truthful and 
informative answers as they scale. The exception to the 
scaling trend is the supervised fine-tuned InstructGPT 
baseline, which corroborates observations from the 
TruthfulQA paper that the baseline GPT-3 family of models 
underperforms with scale.

https://openai.com/blog/improving-factual-accuracy/
https://storage.googleapis.com/deepmind-media/research/language-research/Training%20Gopher.pdf
https://arxiv.org/abs/2112.09332v1
https://arxiv.org/abs/2112.09332v1
https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf
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Multimodal Biases in Contrastive  
Language-Image Pretraining (CLIP)
Techniques used in natural language processing 
such as the transformer architecture have recently 
been adapted to the vision and multimodal 
domains. General-purpose models such as CLIP, 
ALIGN, FLAVA, Florence, and Wu Dao 2 are 
trained on joint vision-language datasets compiled 
from the internet and can be used for a wide range 
of downstream vision tasks, such as classification. 

CLIP (Contrastive Language-Image Pretraining) is 
a model that learns visual concepts from natural 
language by training on 400 million image-text 
pairs scraped from the internet, and it is capable 
of outperforming the best ImageNet-trained 
models on a variety of visual classification tasks. 
Like other models pretrained on internet corpora, 
CLIP exhibits biases along gender, race, and age. 
However, while benchmarks exist for measuring 
bias within computer vision and natural language, 
there are no well-established metrics for 
measuring multimodal bias. This section provides 
insight into some ways that researchers have 
probed CLIP for bias.

Denigration Harm
Exploratory probes show that the design of 
categories used in the model (i.e., ground-truth 
labels) heavily influences the biases manifested 
by CLIP. Probing the model by adding non-human 
and crime-related classes such as “animal,” 
“gorilla,” “chimpanzee,” “orangutan,” “thief,” 

“criminal,” and “suspicious person” to the FairFace 
dataset classes resulted in images of Black 
people being misclassified as nonhuman at a 
significantly higher rate than any other race (14%, 
compared to the next highest misclassification 
rate of 7.6% for images of Indians). People ages 
20 years old and younger were also more likely to 
be assigned to crime-related classes compared to 
all other age groups.

Gender Bias 
Probing CLIP with the Members of Congress 
dataset shows that labels such as “nanny” and 
“housekeeper” were associated with women, 
whereas labels such as “prisoner” and “mobster” 
were associated with men. Figure 3.4.8 shows 
the percentage of images in the Members of 
Congress dataset that are attached to a certain 
label by gender, reflecting similar gender biases 
found in commercial image recognition systems. 
Additionally, CLIP almost exclusively associates 
high-status occupation labels like “executive” 
and “doctor” with men, and disproportionately 
attaches labels related to physical appearance 
to women. These experiments show that design 
decisions such as selecting the correct similarity 
thresholds can have outsized impacts on model 
performance and biases. 
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https://arxiv.org/abs/2103.00020
https://ai.googleblog.com/2021/05/align-scaling-up-visual-and-vision.html
https://arxiv.org/abs/2112.04482
https://arxiv.org/abs/2111.11432
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20bigger-stronger-faster-ai-from-china/?sh=1b1302df6fb2
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2108.02818v1
https://arxiv.org/abs/1908.04913v1
https://arxiv.org/abs/2108.02818
https://journals.sagepub.com/doi/full/10.1177/2378023120967171
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Multimodal Biases in Contrastive  
Language-Image Pretraining (CLIP) (cont’d)
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Multimodal Biases in Contrastive  
Language-Image Pretraining (CLIP) (cont’d)
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Underperformance on Non-English 
Languages
CLIP can be extended to non-English languages 
by replacing the original English text encoder 
with a pretrained, multilingual model such as 
Multilingual BERT (mBERT) and fine-tuning 
further. However, its documentation cautions 
against using the model for non-English 
languages since CLIP was trained only on English 

text, and its performance has not been evaluated 
on other languages.

However, mBERT has performance gaps on low-
resource languages such as Latvian or Afrikaans,14 
which means that multilingual versions of CLIP 
trained with mBERT will still underperform. Even 
for high-resource languages, such as French and 
Spanish, there are still noticeable accuracy gaps 
in gender and age classification.

This is problematic when CLIP is used for curating 
datasets. Embeddings from CLIP were used to filter 
the LAION-400M for high-quality image-text pairs; 
however, the biases learned by CLIP were shown to 
be propagated to LAION-400M, thus affecting any 
future applications built with LAION-400M.

Propagating Learned Bias Downstream 
CLIP has also been shown to learn historical biases 
and conspiracy theories from its internet-sourced 
training dataset. As one example of learned 
historical bias, Figure 3.4.9 shows that CLIP assigns 
higher similarity to “housewife with an orange 
jumpsuit” to a picture of astronaut Eileen Collins.

Figure 3.4.9

RESULTS OF THE 
CLIP-EXPERIMENTS 

PERFORMED WITH THE 
COLOR IMAGE OF THE 

ASTRONAUT EILEEN
Source: Birthane et al., 2021

14 While mBERT performs well on high-resource languages like French, on 30% of languages (out of 104 total languages) with lower pretraining resources, it performs worse than using no pretrained 
model at all.

https://github.com/FreddeFrallan/Multilingual-CLIP
https://github.com/openai/CLIP/blob/main/model-card.md
https://arxiv.org/abs/2005.09093
https://arxiv.org/abs/2106.06683
https://laion.ai/laion-400-open-dataset/
https://arxiv.org/abs/2110.01963
https://arxiv.org/abs/2110.01963
https://arxiv.org/abs/2005.09093
https://arxiv.org/abs/2005.09093
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AI E THICS TRENDS AT FACCT AND 
NEURIPS
To understand trends at the ACM Conference on Fairness, 
Accountability, and Transparency, this section tracks 
FAccT papers published in conference proceedings 
from 2018 to 2021. We categorize author affiliations 
into academic, industry, nonprofit, government, and 
independent categories, while also tracking the location 
of their affiliated institution. Authors with multiple 
affiliations are counted once in each category (academic 
and industry), but multiple affiliations of the same type 
(i.e., authors belonging to two academic institutions) are 
counted once in the category. 

For the analysis conducted on NeurIPS publications, we 
identify workshops themed around real-world impact and 
label papers with a single main category in “healthcare,” 
“climate,” “finance,” “developing world,” or “other,” where 
“other” denotes a paper related to a real-world use case 
but not in one of the other categories.

We tally the number of papers in each category to reach 
the numbers found in Figure 3.3.3. Papers are not double-
counted in multiple categories. We note that this data 
may not be as accurate for data pre-2018 as societal 
impacts work at NeurIPS has historically been categorized 
under a broad “AI for social impact” umbrella,1 but it has 
recently been split into more granular research areas. 
Examples include workshops dedicated to machine 
learning for health,2 climate,3 policy & governance4, 
disaster response5, and the developing world.6

To track trends around specific technical topics at 
NeurIPS as in Figures 3.3.4–3.3.7, we count the number 

of papers accepted to the NeurIPS main track with titles 
containing keywords (e.g., “counterfactual” or “causal” 
for tracking papers related to causal effect), as well as 
papers submitted to related workshops. See the list of 
workshops considered for analysis here. 

ME TA-ANALYSIS OF FAIRNESS 
AND BIAS ME TRICS
For the analysis conducted on fairness and bias metrics in 
AI, we identify and report on benchmark and diagnostic 
metrics which have been consistently cited in the 
academic community, reported on a public leaderboard, 
or reported for publicly available baseline models (e.g., 
GPT-3, BERT, ALBERT). We note that research paper 
citations are a lagging indicator of adoption, and metrics 
which have been very recently adopted may not be 
reflected in the data for 2021.

For Figures 3.1.1 and 3.1.2, we track metrics from the 
following papers and projects: 
	
Aligning AI with Shared Human Values
Assessing Social and Intersectional Biases in 
Contextualized Word Representations
Bias in Bios: A Case Study of Semantic Representation Bias 
in a High-Stakes Setting  
BOLD: Dataset and Metrics for Measuring Biases in Open-
Ended Language Generation
Certifying and Removing Disparate Impact
CivilComments: Jigsaw Unintended Bias in Toxicity 
Classification
CrowS-Pairs: A Challenge Dataset for Measuring Social 
Biases in Masked Language Models

Chapter 3: Technical AI Ethics
APPENDIX

APPENDIX

1 See 2018 Workshop on Ethical, Social and Governance Issues in AI 2018, 2018 AI for Social Good Workshop, 2019 Joint Workshop on AI for Social Good, 2020 Resistance AI Workshop, 2020 Navigating the 
Broader Impacts of AI Research Workshop.
2  See 2014 Machine Learning for Clinical Data Analysis, Healthcare and Genomics, 2015 Machine Learning for Healthcare, 2016 Machine Learning for Health, 2017 Machine Learning for Health.
3 See 2013 Machine Learning for Sustainability, 2020 AI for Earth Sciences, 2019, 2020, 2021 Tackling Climate Change with ML.
4 See 2016 People and Machines, 2019 Joint Workshop on AI for Social Good–Public Policy, 2021 Human-Centered AI.
5  See 2019 AI for Humanitarian Assistance and Disaster Response, 2020 Second Workshop on AI for Humanitarian Assistance and Disaster Response, 2021 Third Workshop on AI for Humanitarian 
Assistance and Disaster Response.
6 See 2017–2021 Machine Learning for the Developing World Workshops. 

https://docs.google.com/spreadsheets/d/1mpiNall3ZfU_UbngKo5GmeGDA-DUIYzpTJapSgG2tes/edit?usp=sharing
https://arxiv.org/abs/2008.02275
https://arxiv.org/abs/1911.01485
https://arxiv.org/abs/1911.01485
https://arxiv.org/abs/1901.09451
https://arxiv.org/abs/1901.09451
https://arxiv.org/abs/2101.11718
https://arxiv.org/abs/2101.11718
https://arxiv.org/pdf/1412.3756.pdf
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
https://arxiv.org/abs/2010.00133
https://arxiv.org/abs/2010.00133
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Detecting Emergent Intersectional Biases: Contextualized 
Word Embeddings Contain a Distribution of Human-Like 
Biases
Equality of Opportunity in Supervised Learning
Evaluating Gender Bias in Machine Translation
Evaluating Gender Bias in Natural Language Inference
Examining Gender Bias in Languages with Grammatical 
Gender
Fairness Through Awareness 
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NATURAL LANGUAGE PROCESSING 
BIAS ME TRICS
In Section 3.2, we track citations of the Perspective API 
created by Jigsaw at Google. The Perspective API has been 
adopted widely by researchers and engineers in natural 
language processing. Its creators define toxicity as “a rude, 
disrespectful, or unreasonable comment that is likely to 
make someone leave a discussion,” and the tool is powered 
by machine learning models trained on a proprietary 
dataset of comments from Wikipedia and news websites. 
We include the following papers in our analysis: 

#ContextMatters: Advantages and Limitations of Using 
Machine Learning to Support Women in Politics
A General Language Assistant as a Laboratory for 
Alignment
A Machine Learning Approach to Comment Toxicity 
Classification
A Novel Preprocessing Technique for Toxic Comment 
Classification
Adversarial Text Generation for Google’s Perspective API
Avoiding Unintended Bias in Toxicity Classification with 
Neural Networks
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Challenges in Detoxifying Language Models
Classification of Online Toxic Comments Using Machine 
Learning Algorithms
Context Aware Text Classification and Recommendation 
Model for Toxic Comments Using Logistic Regression
Detecting Cross-Geographic Biases in Toxicity Modeling on 
Social Media
Detoxifying Language Models Risks Marginalizing Minority 
Voices
Fighting Hate Speech, Silencing Drag Queens? Artificial 
Intelligence in Content Moderation and Risks to LGBTQ 
Voices Online
HATEMOJI: A Test Suite and Adversarially Generated 
Dataset for Benchmarking and Detecting Emoji-Based 
Hate
HotFlip: White-Box Adversarial Examples for Text 
Classification
Identifying Latent Toxic Features on YouTube Using Non-
Negative Matrix Factorization

https://dl.acm.org/doi/abs/10.1145/3461702.3462536
https://dl.acm.org/doi/abs/10.1145/3461702.3462536
https://dl.acm.org/doi/abs/10.1145/3461702.3462536
https://arxiv.org/abs/1610.02413
https://aclanthology.org/P19-1164.pdf
https://arxiv.org/abs/2105.05541
https://arxiv.org/abs/1909.02224.pdf
https://arxiv.org/abs/1909.02224.pdf
https://arxiv.org/abs/1104.3913
https://arxiv.org/abs/1804.09301
https://arxiv.org/abs/1804.06876
https://arxiv.org/abs/1804.06876
https://arxiv.org/abs/2005.00699
https://arxiv.org/abs/2005.00699
https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://arxiv.org/abs/2010.15052
https://arxiv.org/abs/2010.15052
https://arxiv.org/pdf/2010.06032.pdf
https://arxiv.org/pdf/2010.06032.pdf
https://arxiv.org/abs/1906.07337
https://securedata.lol/camera_ready/37.pdf
https://arxiv.org/abs/1903.04561
https://arxiv.org/abs/1903.04561
https://arxiv.org/pdf/1710.03184.pdf
https://arxiv.org/pdf/1710.03184.pdf
https://arxiv.org/abs/1903.10561
https://www.perspectiveapi.com/
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/1608.07187
https://arxiv.org/abs/1608.07187
https://arxiv.org/abs/2004.09456
https://arxiv.org/abs/2004.09456
https://arxiv.org/abs/1909.01326
https://arxiv.org/abs/1909.01326
https://papers.nips.cc/paper/2017/file/1271a7029c9df08643b631b02cf9e116-Paper.pdf
https://papers.nips.cc/paper/2017/file/1271a7029c9df08643b631b02cf9e116-Paper.pdf
https://arxiv.org/abs/2110.00116
https://arxiv.org/abs/2110.00116
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/1903.06765
https://arxiv.org/abs/1903.06765
https://ieeexplore.ieee.org/document/9445252
https://ieeexplore.ieee.org/document/9445252
https://ieeexplore.ieee.org/document/9087368
https://ieeexplore.ieee.org/document/9087368
https://arxiv.org/abs/2106.09898
https://arxiv.org/abs/2109.07445
https://ieeexplore.ieee.org/document/9120939
https://ieeexplore.ieee.org/document/9120939
https://www.researchgate.net/publication/343223276_Context_Aware_Text_Classification_and_Recommendation_Model_for_Toxic_Comments_Using_Logistic_Regression
https://www.researchgate.net/publication/343223276_Context_Aware_Text_Classification_and_Recommendation_Model_for_Toxic_Comments_Using_Logistic_Regression
https://arxiv.org/abs/2104.06999
https://arxiv.org/abs/2104.06999
https://arxiv.org/abs/2104.06390
https://arxiv.org/abs/2104.06390
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://link.springer.com/article/10.1007/s12119-020-09790-w
https://arxiv.org/abs/2108.05921
https://arxiv.org/abs/2108.05921
https://arxiv.org/abs/2108.05921
https://arxiv.org/abs/2108.05921
https://arxiv.org/abs/1712.06751
https://arxiv.org/abs/1712.06751
https://www.researchgate.net/publication/336568016_Identifying_Latent_Toxic_Features_on_YouTube_Using_Non-negative_Matrix_Factorization
https://www.researchgate.net/publication/336568016_Identifying_Latent_Toxic_Features_on_YouTube_Using_Non-negative_Matrix_Factorization
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While the Perspective API is used widely within machine 
learning research and also for measuring online toxicity, 
toxicity in the specific domains used to train the models 
undergirding Perspective (e.g., news, Wikipedia) may not 
be broadly representative of all forms of toxicity (e.g., 
trolling). Other known caveats include biases against text 
written by minority voices: The Perspective API has been 
shown to disproportionately assign high toxicity scores 
to text that contains mentions of minority identities (e.g., 
“I am a gay man”). As a result, detoxification techniques 
built with labels sourced from the Perspective API result 
in models that are less capable of modeling language 
used by minority groups, and they avoid mentioning 
minority identities.

We note that the effect size metric reported in the 
Word Embeddings Association Test (WEAT) section is 
highly sensitive to rare words, as it has been shown 
that removing less than 1% of relevant documents in 
a corpus can significantly impact the WEAT effect size. 
This means that effect size is not guaranteed to be a 
robust metric for assessing bias in embeddings. While 
we report on a subset of embedding association tasks 
measuring bias along gender and racial axes, these 
embedding association tests have been extended to 
quantify the effect across intersectional axes (e.g., 
EuropeanAmerican+male, AfricanAmerican+male, 
AfricanAmerican+female). 

In the analysis of embeddings from over 100 years of 
U.S. Census data, embedding bias was measured by 
computing the difference between average embedding 
distances. For example, gender bias is calculated as the 
average distance of embeddings of words associated with 
women (e.g., she, female) compared to embeddings of 
words for occupations (e.g., teacher, lawyer), minus the 
same average distance calculated for words associated 
with men. 

https://arxiv.org/abs/1908.07336
https://arxiv.org/abs/1908.07336
http://ceur-ws.org/Vol-2943/exist_paper7.pdf
http://ceur-ws.org/Vol-2943/exist_paper7.pdf
https://arxiv.org/abs/2103.11790
https://arxiv.org/abs/2103.11790
https://arxiv.org/abs/2101.03207
https://arxiv.org/abs/2101.03207
https://arxiv.org/abs/1903.02088
https://arxiv.org/abs/1810.01869
https://arxiv.org/abs/2108.07790
https://arxiv.org/abs/2108.07790
https://arxiv.org/abs/2105.03023
https://arxiv.org/abs/2105.03023
https://aclanthology.org/W19-3504/
https://aclanthology.org/W19-3504/
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2009.11462
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2103.00453
https://arxiv.org/abs/2103.00453
https://arxiv.org/abs/1911.03891
https://arxiv.org/abs/1911.03891
https://arxiv.org/abs/2005.00813
https://arxiv.org/abs/2005.00813
https://arxiv.org/abs/2001.05495
https://arxiv.org/abs/2001.05495
https://aclanthology.org/P19-1163/
https://arxiv.org/abs/2005.04411
https://arxiv.org/abs/2005.04411
https://link.springer.com/chapter/10.1007/978-981-15-8677-4_38
https://link.springer.com/chapter/10.1007/978-981-15-8677-4_38
http://workshop-proceedings.icwsm.org/pdf/2021_16.pdf
http://workshop-proceedings.icwsm.org/pdf/2021_16.pdf
https://arxiv.org/abs/1911.04525
https://arxiv.org/abs/1904.02405
https://arxiv.org/abs/1904.02405
https://arxiv.org/abs/1911.11025
https://arxiv.org/abs/1911.11025
https://arxiv.org/abs/2104.06390
https://arxiv.org/abs/2104.06390
http://proceedings.mlr.press/v97/brunet19a/brunet19a.pdf
https://arxiv.org/abs/1911.01485
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FACTUALIT Y AND TRUTHFULNESS

Definitions
The concepts of factuality, factual correctness, factual 
accuracy, and veracity are all used to refer to conformity 
with facts or truth. Recent work in AI aims to assess 
factual correctness within language models and 
characterize their limitations. 

While human truthfulness is a relatively well-understood 
concept, truthfulness is not a well-characterized concept 
within the context of AI. A group of researchers has 
proposed frameworks for what it means for a system 
to be truthful—for example, a broadly truthful system 
should avoid lying or using true statements to mislead 
or misdirect; should be clear, informative, and (mostly) 
cooperative in conversation; and should be well-calibrated, 
self-aware, and open about the limits of its knowledge. 
A definition of narrow truthfulness may simply refer to 
systems which avoid stating falsehoods. The authors of 
TruthfulQA define a system as truthful only if it avoids 
asserting a false statement; refusing to answer a question, 
expressing uncertainty, or giving a true but irrelevant 
answer may be considered truthful but not informative. 

Truthfulness is related to alignment: A truthful system is 
aligned with human values and goals. In one definition of 
alignment, an aligned system is one that is helpful, honest, 
and harmless. Since we cannot yet measure honesty within 
a system, truthfulness can be used as a proxy.
 
An honest system is one that asserts only what it 
“believes” or one that never contradicts its own beliefs. 
A system can be honest but not truthful—for example, if 
an honest system believes that vaccines are unsafe, it can 
claim this honestly, despite the statement being factually 
incorrect. Conversely, a system can be truthful but not 
honest: It may believe vaccines are unsafe but asserts 
they are safe to pass a test. Another work proposes that 
an honest system should give accurate information, not 
mislead users, be calibrated (e.g., it should be correct 80% 
of the time when it claims 80% confidence), and express 
appropriate levels of uncertainty.

Hallucination refers to language models fabricating 
statements not found in factually correct supporting 
evidence or input documents. In closed-form dialog, 
summarization, or question-answering, a system that 
hallucinates is considered untruthful. 

Language Diversity in Training Data 
Imbalanced language distribution in training data 
impacts the performance of general-purpose language 
models. For example, the Gopher family of models is 
trained on MassiveText (10.5TB), which is a dataset 
made up of 99% English. Similarly, only 7.4% of GPT-3 
training data is in non-English languages. In contrast, 
XGLM, a recent model family from Meta AI, is trained on 
a training data of 30 languages, and upsamples low-
resource languages to create a more balanced language 
representation. See Figure 1 on the XGLM paper that 
compares the language distribution of XGLM and GPT-3. 

In addition, Figure 7 of the XGLM paper highlights the 
extent to which language models can effectively store 
factual knowledge by comparing the performance of 
XGLM (a multilingual language model) with GPT-3, a 
monolingual model. Performance was evaluated on 
knowledge triplet completion using the mLAMA dataset, 
which was translated from the English benchmark LAMA 
using Google Translate. GPT-3 outperforms in English, 
but XGLM outperforms in non-English languages. Further 
results show that more diverse language representation 
improves language model performance in tasks such as 
translation. 

In 2021, Congress inquired into the content moderation 
practices of social media companies in non-English 
languages, and emphasized the importance of equal 
access to truthful and trustworthy information regardless 
of language. As these companies start to adopt language 
models into their fact-checking and content moderation 
processes for languages around the world, it is critical to 
be able to measure the disproportionate negative impact 
of using models which underperform on non-English 
languages.
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https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2110.06674
https://arxiv.org/abs/2109.07958
https://arxiv.org/pdf/2112.00861.pdf
https://arxiv.org/pdf/2112.00861.pdf
https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf
https://www.lesswrong.com/posts/sdxZdGFtAwHGFGKhg/truthful-and-honest-ai
https://www.lesswrong.com/posts/sdxZdGFtAwHGFGKhg/truthful-and-honest-ai
https://arxiv.org/pdf/2110.06674.pdf
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2005.00661
https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf
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https://thehill.com/policy/technology/565637-democrats-urge-tech-ceos-to-combat-spanish-disinformation

	_arcd32eg0g2u
	_goas12dti62e
	_6n928coo1ojh
	_1hxahic6qfq
	_dy091fipbe8q
	_i6p6t9tcwif4

